Bedoukian     Laser Vibrometer

Animal Taxa
Plant Taxa
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Invasive spp.


Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractConfocal fluorescence detection expanded to UV excitation: the first continuous fluorimetric assay of human steroid sulfatase in nanoliter volume    Next AbstractIn vitro evolution of proteins for drug development »

Assay Drug Dev Technol

Title:Identification of signal transduction pathways used by orphan g protein-coupled receptors
Author(s):Bresnick, J. N. Skynner, H. A. Chapman, K. L. Jack, A. D. Zamiara, E. Negulescu, P. Beaumont, K. Patel, S. McAllister, G.
Address:Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Ltd., Harlow, Essex, United Kingdom.
Year:2003 Apr
Journal Title:Assay Drug Dev Technol
Page Number:239-49
ISSN/ISBN:1540-658X (Print). 1540-658X (Linking)
Abstract:The superfamily of GPCRs have diverse biological roles, transducing signals from a range of stimuli, from photon recognition by opsins to neurotransmitter regulation of neuronal function. Of the many identified genes encoding GPCRs, >130 are orphan receptors ( i.e., their endogenous ligands are unknown), and this subset represents putative novel therapeutic targets for pharmaceutical intervention in a variety of diseases. As an initial step toward drug discovery, determining a biological function for these newly identified receptors is of vital importance, and thus identification of a natural ligand(s) is a primary aim. There are several established methods for doing this, but many have drawbacks and usually require some in-depth knowledge about how the receptor functions. The technique described here utilizes a transcription-based reporter assay in live cells. This allows the determination of the signal transduction pathway any given oGPCR uses, without any prior knowledge of the endogenous ligand. This can therefore reduce the redundancy of effort involved in screening ligands at a given receptor in multiple formats (i.e., Galpha(s), Galpha(i/0), and Galpha(q) assays), as well as ensuring that the receptor targeted is capable of signaling if appropriately activated. Such knowledge is often laboriously obtained, and for almost all oGPCRs, this kind of information is not yet available. This technology can also be used to develop inverse agonist as well as agonist sensitive high throughput assays for oGPCRs. The veracity of this approach is demonstrated, using a number of known GPCRs. The likely signaling pathways of the GPR3, GPR12, GPR19, GPR21, and HG55 oGPCRs are shown, and a high throughput assay for GPR26 receptors developed. The methods outlined here for elucidation of the signal transduction pathways for oGPCRs and development of functional assays should speed up the process of identification of ligands for this potentially therapeutically useful group of receptors.

Back to top
Citation: El-Sayed AM. The Pherobase: Database of Pheromones and Semiochemicals. <>.
The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.